Connectome of the Suprachiasmatic Nucleus: New Evidence of the Core-Shell Relationship

视交叉上核的连接组:核-壳关系的新证据

阅读:5
作者:Shruti Varadarajan, Mary Tajiri, Rashi Jain, Rebecca Holt, Qanetha Ahmed, Joseph LeSauter, Rae Silver

Abstract

A brain clock, constituted of ∼20,000 peptidergically heterogeneous neurons, is located in the hypothalamic suprachiasmatic nucleus (SCN). While many peptidergic cell types have been identified, little is known about the connections among these neurons in mice. We first sought to identify contacts among major peptidergic cell types in the SCN using triple-label fluorescent immunocytochemistry (ICC). To this end, contacts among vasoactive intestinal polypeptide (VIP), gastrin-releasing peptide (GRP), and calretinin (CALR) cells of the core, and arginine vasopressin (AVP) and met-enkephalin (ENK) cells of the shell were analyzed. Some core-to-shell and shell-to-core communications are specialized. We found that in wild-type (WT) mice, AVP fibers make extremely sparse contacts onto VIP neurons but contacts in the reverse direction are numerous. In contrast, AVP fibers make more contacts onto GRP neurons than conversely. For the other cell types tested, largely reciprocal connections are made. These results point to peptidergic cell type-specific communications between core and shell SCN neurons. To further understand the impact of VIP-to-AVP communication, we next explored the SCN in VIP-deficient mice (VIP-KO). In these animals, AVP expression is markedly reduced in the SCN, but it is not altered in the paraventricular nucleus (PVN) and supraoptic nucleus (SON). Surprisingly, in VIP-KO mice, the number of AVP appositions onto other peptidergic cell types is not different from controls. Colchicine administration, which blocks AVP transport, restored the numbers of AVP neurons in VIP-KO to that of WT littermates. The results indicate that VIP has an important role in modulating AVP expression levels in the SCN in this mouse.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。