Glioblastoma Therapy Can Be Augmented by Targeting IDH1-Mediated NADPH Biosynthesis

可通过靶向 IDH1 介导的 NADPH 生物合成增强胶质母细胞瘤治疗

阅读:5
作者:Daniel R Wahl, Joseph Dresser, Kari Wilder-Romans, Joshua D Parsels, Shuang G Zhao, Mary Davis, Lili Zhao, Maureen Kachman, Stefanie Wernisch, Charles F Burant, Meredith A Morgan, Felix Y Feng, Corey Speers, Costas A Lyssiotis, Theodore S Lawrence

Abstract

NADPH is a critical reductant needed in cancer cells to fuel the biosynthesis of deoxynucleotides and antioxidants and to sustain stress-survival responses after radiation-induced DNA damage. Thus, one rational strategy to attack cancer cells is to target their heavy reliance on NADPH. Here, we report that the isocitrate dehydrogenase IDH1 is the most strongly upregulated NADPH-producing enzyme in glioblastoma (GBM). IDH1 silencing in GBM cells reduced levels of NADPH, deoxynucleotides, and glutathione and increased their sensitivity to radiation-induced senescence. Rescuing these metabolic restrictions was sufficient to reverse IDH1-mediated radiosensitization. In a murine xenograft model of human GBM, we found that IDH1 silencing significantly improved therapeutic responses to fractionated radiotherapy, when compared with either treatment alone. In summary, our work offers a mechanistic rationale for IDH1 inhibition as a metabolic strategy to improve the response of GBM to radiotherapy. Cancer Res; 77(4); 960-70. ©2016 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。