Overexpression of BDNF increases excitability of the lumbar spinal network and leads to robust early locomotor recovery in completely spinalized rats

BDNF 的过度表达会增加腰椎网络的兴奋性,并导致完全脊髓损伤大鼠的早期运动功能恢复强劲

阅读:14
作者:Ewelina Ziemlińska, Sebastian Kügler, Melitta Schachner, Iwona Wewiór, Julita Czarkowska-Bauch, Małgorzata Skup

Abstract

Strategies to induce recovery from lesions of the spinal cord have not fully resulted in clinical applications. This is a consequence of a number of impediments that axons encounter when trying to regrow beyond the lesion site, and that intraspinal rearrangements are subjected to. In the present study we evaluated (1) the possibility to improve locomotor recovery after complete transection of the spinal cord by means of an adeno-associated (AAV) viral vector expressing the neurotrophin brain-derived neurotrophic factor (BDNF) in lumbar spinal neurons caudal to the lesion site and (2) how the spinal cord transection and BDNF treatment affected neurotransmission in the segments caudal to the lesion site. BDNF overexpression resulted in clear increases in expression levels of molecules involved in glutamatergic (VGluT2) and GABAergic (GABA, GAD65, GAD67) neurotransmission in parallel with a reduction of the potassium-chloride co-transporter (KCC2) which contributes to an inhibitory neurotransmission. BDNF treated animals showed significant improvements in assisted locomotor performance, and performed locomotor movements with body weight support and plantar foot placement on a moving treadmill. These positive effects of BDNF local overexpression were detectable as early as two weeks after spinal cord transection and viral vector application and lasted for at least 7 weeks. Gradually increasing frequencies of clonic movements at the end of the experiment attenuated the quality of treadmill walking. These data indicate that BDNF has the potential to enhance the functionality of isolated lumbar circuits, but also that BDNF levels have to be tightly controlled to prevent hyperexcitability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。