Protein disulfide isomerase as a prosurvival factor in cell therapy for muscular and vascular diseases

蛋白质二硫键异构酶作为肌肉和血管疾病细胞治疗中的促存活因子

阅读:4
作者:Giuliana Di Rocco, Silvia Baldari, Antonietta Gentile, Maurizio Capogrossi, Gabriele Toietta

Background

Cell therapy for degenerative diseases aims at rescuing tissue damage by delivery of precursor cells. Thus far, this strategy has been mostly unsuccessful due to massive loss of donor cells shortly after transplantation. Several strategies have been applied to increase transplanted cell survival but only with limited success. The endoplasmic reticulum (ER) is an organelle involved in protein folding, calcium homeostasis, and lipid biosynthesis. Protein disulfide isomerase (PDI) is a molecular chaperone induced and activated by ER stress. PDI is induced by hypoxia in neuronal, cardiac, and endothelial cells, supporting increased cell survival to hypoxic stress and protection from apoptosis in response to ischemia.

Conclusions

Collectively, these results suggest that overexpression of PDI may protect transplanted cells from hypoxia and other possibly occurring ER stresses, and consequently enhance their regenerative properties.

Methods

We achieved ex vivo PDI gene transfer into luciferase-expressing myoblasts and endothelial cells. We assessed cell engraftment upon intramuscular transplantation into a mouse model of Duchenne muscular dystrophy (mdx mouse) and into a mouse model of ischemic disease.

Results

We observed that loss of full-length dystrophin expression in mdx mice muscle leads to an increase of PDI expression, possibly in response to augmented ER protein folding load. Moreover, we determined that overexpression of PDI confers a survival advantage for muscle cells in vitro and in vivo to human myoblasts injected into murine dystrophic muscle and to endothelial cells administered upon hindlimb ischemia damage, improving the therapeutic outcome of the cell therapy treatment. Conclusions: Collectively, these results suggest that overexpression of PDI may protect transplanted cells from hypoxia and other possibly occurring ER stresses, and consequently enhance their regenerative properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。