Contacting individual graphene nanoribbons using carbon nanotube electrodes

使用碳纳米管电极接触单个石墨烯纳米带

阅读:5
作者:Jian Zhang, Liu Qian, Gabriela Borin Barin, Abdalghani H S Daaoub, Peipei Chen, Klaus Müllen, Sara Sangtarash, Pascal Ruffieux, Roman Fasel, Hatef Sadeghi, Jin Zhang, Michel Calame, Mickael L Perrin

Abstract

Graphene nanoribbons synthesized using bottom-up approaches can be structured with atomic precision, allowing their physical properties to be precisely controlled. For applications in quantum technology, the manipulation of single charges, spins or photons is required. However, achieving this at the level of single graphene nanoribbons is experimentally challenging due to the difficulty of contacting individual nanoribbons, particularly on-surface synthesized ones. Here we report the contacting and electrical characterization of on-surface synthesized graphene nanoribbons in a multigate device architecture using single-walled carbon nanotubes as the electrodes. The approach relies on the self-aligned nature of both nanotubes, which have diameters as small as 1 nm, and the nanoribbon growth on their respective growth substrates. The resulting nanoribbon-nanotube devices exhibit quantum transport phenomena-including Coulomb blockade, excited states of vibrational origin and Franck-Condon blockade-that indicate the contacting of individual graphene nanoribbons.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。