Connective tissue growth factor (CCN2) is a matricellular preproprotein controlled by proteolytic activation

结缔组织生长因子 (CCN2) 是一种受蛋白水解活化控制的基质细胞前蛋白

阅读:6
作者:Ole Jørgen Kaasbøll, Ashish K Gadicherla, Jian-Hua Wang, Vivi Talstad Monsen, Else Marie Valbjørn Hagelin, Meng-Qiu Dong, Håvard Attramadal

Abstract

Connective tissue growth factor (CTGF; now often referred to as CCN2) is a secreted protein predominantly expressed during development, in various pathological conditions that involve enhanced fibrogenesis and tissue fibrosis, and in several cancers and is currently an emerging target in several early-phase clinical trials. Tissues containing high CCN2 activities often display smaller degradation products of full-length CCN2 (FL-CCN2). Interpretation of these observations is complicated by the fact that a uniform protein structure that defines biologically active CCN2 has not yet been resolved. Here, using DG44 CHO cells engineered to produce and secrete FL-CCN2 and cell signaling and cell physiological activity assays, we demonstrate that FL-CCN2 is itself an inactive precursor and that a proteolytic fragment comprising domains III (thrombospondin type 1 repeat) and IV (cystine knot) appears to convey all biologically relevant activities of CCN2. In congruence with these findings, purified FL-CCN2 could be cleaved and activated following incubation with matrix metalloproteinase activities. Furthermore, the C-terminal fragment of CCN2 (domains III and IV) also formed homodimers that were ∼20-fold more potent than the monomeric form in activating intracellular phosphokinase cascades. The homodimer elicited activation of fibroblast migration, stimulated assembly of focal adhesion complexes, enhanced RANKL-induced osteoclast differentiation of RAW264.7 cells, and promoted mammosphere formation of MCF-7 mammary cancer cells. In conclusion, CCN2 is synthesized and secreted as a preproprotein that is autoinhibited by its two N-terminal domains and requires proteolytic processing and homodimerization to become fully biologically active.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。