Fibroblastic foci, covered with alveolar epithelia exhibiting epithelial-mesenchymal transition, destroy alveolar septa by disrupting blood flow in idiopathic pulmonary fibrosis

成纤维细胞灶被表现出上皮-间质转化的肺泡上皮覆盖,通过扰乱特发性肺纤维化中的血流来破坏肺泡隔

阅读:5
作者:Miki Yamaguchi, Sachie Hirai, Yusuke Tanaka, Toshiyuki Sumi, Masahiro Miyajima, Taijiro Mishina, Gen Yamada, Mitsuo Otsuka, Tadashi Hasegawa, Takashi Kojima, Toshiro Niki, Atsushi Watanabe, Hiroki Takahashi, Yuji Sakuma

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease of unknown cause. IPF has a distinct histopathological pattern of usual interstitial pneumonia in which fibroblastic foci (FF) represent the leading edge of fibrotic destruction of the lung. Currently there are three major hypotheses for how FF are generated: (1) from resident fibroblasts, (2) from bone marrow-derived progenitors of fibroblasts, and (3) from alveolar epithelial cells that have undergone epithelial-mesenchymal transition (EMT). We found that FF dissociated capillary vessels from the alveolar epithelia, the basement membranes of which are fused in normal physiological conditions, and pushed the capillaries and elastic fibers down ~100 μm below the alveolar epithelia. Furthermore, the alveolar epithelial cells covering the FF exhibited a partial EMT phenotype. In addition, normal human alveolar epithelial cells in vitro underwent dynamic EMT in response to transforming growth factor-β signaling within 72 h. Because it seems that resident fibroblasts or bone marrow-derived cells cannot easily infiltrate and form FF between the alveolar epithelia and capillaries in tight contact with each other, FF are more likely to be derived from the epithelial-to-mesenchymal transitioned alveolar epithelia located over them. Moreover, histology and immunohistochemistry suggested that the FF formed in the lung parenchyma disrupt blood flow to the alveolar septa, thus destroying them. Consequently, collapse of the alveolar septa is likely to be the first step toward honeycombing in the lung during late stage IPF. On the basis of these findings, inhibition of transforming growth factor-β signaling, which can suppress EMT of the alveolar epithelial cells in vitro, is a potential strategy for treating IPF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。