Long-Term Potentiation Requires a Rapid Burst of Dendritic Mitochondrial Fission during Induction

长期增强需要在诱导过程中快速爆发树突状线粒体裂变

阅读:4
作者:Sai Sachin Divakaruni, Adam M Van Dyke, Ramesh Chandra, Tara A LeGates, Minerva Contreras, Poorna A Dharmasri, Henry N Higgs, Mary Kay Lobo, Scott M Thompson, Thomas A Blanpied

Abstract

Synaptic transmission is bioenergetically demanding, and the diverse processes underlying synaptic plasticity elevate these demands. Therefore, mitochondrial functions, including ATP synthesis and Ca2+ handling, are likely essential for plasticity. Although axonal mitochondria have been extensively analyzed, LTP is predominantly induced postsynaptically, where mitochondria are understudied. Additionally, though mitochondrial fission is essential for their function, signaling pathways that regulate fission in neurons remain poorly understood. We found that NMDAR-dependent LTP induction prompted a rapid burst of dendritic mitochondrial fission and elevations of mitochondrial matrix Ca2+. The fission burst was triggered by cytosolic Ca2+ elevation and required CaMKII, actin, and Drp1, as well as dynamin 2. Preventing fission impaired mitochondrial matrix Ca2+ elevations, structural LTP in cultured neurons, and electrophysiological LTP in hippocampal slices. These data illustrate a novel pathway whereby synaptic activity controls mitochondrial fission and show that dynamic control of fission regulates plasticity induction, perhaps by modulating mitochondrial Ca2+ handling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。