Phosphorylation of nucleolin is indispensable to its involvement in the proliferation and migration of non-small cell lung cancer cells

核仁素的磷酸化对于其参与非小细胞肺癌细胞的增殖和迁移至关重要

阅读:5
作者:Feifei Huang, Yanyang Wu, Hong Tan, Tianyao Guo, Ke Zhang, Daiqiang Li, Zhongyi Tong

Abstract

Non-small cell lung cancer (NSCLC) is one of the mostly deadly malignancies in the world. Nucleolin is a multifunctional protein that mainly regulates ribosome biogenesis but also has other functions including modulating the transcription of mRNAs and repressing RNA polymerase II. Nucleolin is overexpressed in various cancer cells, including NSCLC cells. It can confer resistance to apoptosis and promote cell migration and blood vessel formation by directly taking part in various tumor signal transduction pathways. The activities of nucleolin are regulated mainly by intracellular localization and post-translational modifications, including phosphorylation, glycosylation, methylation, and ADP-ribosylation. Phosphorylation of nucleolin (P-nucleolin) in NSCLC cells is still not well characterized. In the present study, the levels of nucleolin and P-nucleolin were examined in lung tissue and cells and it was demonstrated that levels of the two forms of nucleolin were significantly increased in NSCLC compared with non-cancerous tissues and cells. In addition, it was demonstrated that high expression levels of nucleolin and P-nucleolin were significantly associated with poor overall survival of NSCLC patients. Doxorubicin (DOX) is a type of anthracycline that has been used in the treatment of various types of cancer, including NSCLC. Upregulation of nucleolin through exogenous expression of nucleolin promoted A549 cell proliferation and migration, while downregulation of nucleolin through expression of small interfering RNA-nucleolin attenuated A549 cell proliferation and migration. Following stimulation with DOX, A549 cell proliferation and migration decreased and the expression of P-nucleolin also decreased. In order to investigate whether P-nucleolin is indispensable to the proliferation and migration of NSCLC cells, a plasmid encoding mutant nucleolin, in which the phosphorylation site at threonine-76 was mutated to alanine, was constructed. Compared with the A549 cells transfected with wild-type nucleolin, P-nucleolin expression and cell proliferation and migration were significantly decreased in A549 cells transfected with mutant nucleolin. These results indicate that targeting P-nucleolin may be a promising strategy for treating NSCLC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。