Complement factor B regulates cellular senescence and is associated with poor prognosis in pancreatic cancer

补体因子 B 调节细胞衰老并与胰腺癌预后不良相关

阅读:5
作者:Reiri Shimazaki, Shigetsugu Takano, Mamoru Satoh, Mamoru Takada, Yoji Miyahara, Kosuke Sasaki, Hideyuki Yoshitomi, Shingo Kagawa, Katsunori Furukawa, Tsukasa Takayashiki, Satoshi Kuboki, Kazuyuki Sogawa, Shinichiro Motohashi, Fumio Nomura, Masaru Miyazaki, Masayuki Ohtsuka

Background

The interplay between cancer cells and stromal components, including soluble mediators released from cancer cells, contributes to the progression of pancreatic ductal adenocarcinoma (PDAC). Here, we set out to identify key secreted proteins involved in PDAC progression.

Conclusions

Our data indicate that CFB, a key secreted protein, promotes proliferation by preventing cellular senescence and is associated with immunological tumor promotion in PDAC. These findings suggest that CFB may be a potential target for the treatment of PDAC.

Methods

We performed secretome analyses of culture media of mouse pancreatic intraepithelial neoplasia (PanIN) and PDAC cells using Stable Isotope Labeling by Amino acid in Cell culture (SILAC) with click chemistry and liquid chromatography-mass spectrometry (LC-MS/MS). The

Results

Complement factor B (CFB) was identified as one of the robustly upregulated proteins, and found to exhibit elevated expression in PDAC cells compared to PanIN cells. Endogenous CFB knockdown by a specific siRNA dramatically decreased the proliferation of PDAC cells, PANC-1 and MIA PaCa-II. CFB knockdown induced increases in the number of senescence-associated-β-galactosidase (SA-β-gal) positive cells exhibiting p21 expression upregulation, which promotes cellular senescence with cyclinD1 accumulation. Furthermore, CFB knockdown facilitated downregulation of proliferating cell nuclear antigen and led to cell cycle arrest in the G1 phase in PDAC cells. Using immunohistochemistry, we found that high stromal CFB expression was associated with unfavorable clinical outcomes with hematogenous dissemination after surgery in human PDAC patients. Despite the presence of enriched CD8+ tumor infiltrating lymphocytes in the PDAC tumor microenvironments, patients with a high stromal CFB expression exhibited a significantly poorer prognosis compared to those with a low stromal CFB expression. Immunofluorescence staining revealed a correlation between stromal CFB expression in the tumor microenvironment and an enrichment of immunosuppressive regulatory T-cells (Tregs), myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). We also found that high stromal CFB expression showed a positive correlation with high CD8+/Foxp3+ Tregs populations in PDAC tissues. Conclusions: Our data indicate that CFB, a key secreted protein, promotes proliferation by preventing cellular senescence and is associated with immunological tumor promotion in PDAC. These findings suggest that CFB may be a potential target for the treatment of PDAC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。