The small molecule rhodomyrtone suppresses TNF-α and IL-17A-induced keratinocyte inflammatory responses: A potential new therapeutic for psoriasis

小分子玫瑰红素抑制 TNF-α 和 IL-17A 诱导的角质形成细胞炎症反应:一种治疗牛皮癣的潜在新方法

阅读:3
作者:Julalak Chorachoo, Sylviane Lambert, Teal Furnholm, Liza Roberts, Laura Reingold, Sauvarat Auepemkiate, Supayang P Voravuthikunchai, Andrew Johnston

Abstract

Psoriasis is a common skin disease pathogenically driven by TNF and IL-17A-induced epidermal hyperproliferation and inflammatory responses. The ongoing need for new therapeutic agents for psoriasis has highlighted medicinal plants as sources of phytochemicals useful for treating psoriatic disease. Rhodomyrtone, a bioactive phytochemical from Rhodomyrtus tomentosa, has well-established anti-proliferative activities. This study assessed the potential of rhodomyrtone for curtailing TNF/IL-17A-driven inflammation. Stimulating human skin organ cultures with TNF+IL-17A to model the skin inflammation in psoriasis, we found that rhodomyrtone significantly decreased inflammatory gene expression and the expression and secretion of inflammatory proteins, assessed by qRT-PCR, immunohistochemistry and ELISA assays respectively. RNA-seq analysis of monolayer primary keratinocytes treated with IL-17A/TNF showed that rhodomyrtone inhibited 724/1587 transcripts >2-fold altered by IL-17A/TNF (p<0.01), a number of which were confirmed at the mRNA and protein level. Suggesting that rhodomyrtone acts by modulating MAP kinase and NF-κB signaling pathways, rhodomyrtone inhibited TNF-induced ERK, JNK, p38, and NF-κBp65 phosphorylation. Finally, assessing the in vivo anti-inflammatory potential of rhodomyrtone, we examined its effects on imiquimod-induced skin inflammation in mice, finding rhodomyrtone reversed imiquimod-induced skin hyperplasia and epidermal thickening (p< 0.001). Taken together, these results suggest that rhodomyrtone may be useful in preventing or slowing the progression of inflammatory skin disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。