Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds

石墨烯基支架损伤相关微环境中神经元再生的临床前评估

阅读:4
作者:Yun Qian #, Xu Wang #, Jialin Song #, Wei Chen, Shuai Chen, Yi Jin, Yuanming Ouyang, Wei-En Yuan, Cunyi Fan

Abstract

As the application of graphene nanomaterials gets increasingly attractive in the field of tissue engineering and regenerative medicine, the long-term evaluation is necessary and urgent as to their biocompatibility and regenerative capacity in different tissue injuries, such as nerve, bone, and heart. However, it still remains controversial about the potential biological effects of graphene on neuronal activity, especially after severe nerve injuries. In this study, we establish a lengthy peripheral nerve defect rat model and investigate the potential toxicity of layered graphene-loaded polycaprolactone scaffold after implantation during 18 months in vivo. In addition, we further identify possible biologically regenerative effects of this scaffold on myelination, axonal outgrowth, and locomotor function recovery. It is confirmed that graphene-based nanomaterials exert negligible toxicity and repair large nerve defects by dual regulation of Schwann cells and astroglia in the central and peripheral nervous systems. The findings enlighten the future of graphene nanomaterial as a key type of biomaterials for clinical translation in neuronal regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。