Dynamics of alternative splicing during somatic cell reprogramming reveals functions for RNA-binding proteins CPSF3, hnRNP UL1, and TIA1

体细胞重编程过程中可变剪接的动力学揭示了 RNA 结合蛋白 CPSF3、hnRNP UL1 和 TIA1 的功能

阅读:7
作者:Claudia Vivori, Panagiotis Papasaikas, Ralph Stadhouders, Bruno Di Stefano, Anna Ribó Rubio, Clara Berenguer Balaguer, Serena Generoso, Anna Mallol, José Luis Sardina, Bernhard Payer, Thomas Graf, Juan Valcárcel

Background

Somatic cell reprogramming is the process that allows differentiated cells to revert to a pluripotent state. In contrast to the extensively studied rewiring of epigenetic and transcriptional programs required for reprogramming, the dynamics of post-transcriptional changes and their associated regulatory mechanisms remain poorly understood. Here we study the dynamics of alternative splicing changes occurring during efficient reprogramming of mouse B cells into induced pluripotent stem (iPS) cells and compare them to those occurring during reprogramming of mouse embryonic fibroblasts.

Conclusions

Our results reveal common programs of splicing regulation during reprogramming of different cell types and identify three novel regulators of this process and their targets.

Results

We observe a significant overlap between alternative splicing changes detected in the two reprogramming systems, which are generally uncoupled from changes in transcriptional levels. Correlation between gene expression of potential regulators and specific clusters of alternative splicing changes enables the identification and subsequent validation of CPSF3 and hnRNP UL1 as facilitators, and TIA1 as repressor of mouse embryonic fibroblasts reprogramming. We further find that these RNA-binding proteins control partially overlapping programs of splicing regulation, involving genes relevant for developmental and morphogenetic processes. Conclusions: Our results reveal common programs of splicing regulation during reprogramming of different cell types and identify three novel regulators of this process and their targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。