Major ampullate silk gland transcriptomes and fibre proteomes of the golden orb-weavers, Nephila plumipes and Nephila pilipes (Araneae: Nephilidae)

金丝蜘蛛、Nephila plumipes 和 Nephila pilipes 的主要壶腹丝腺转录组和纤维蛋白质组(蜘蛛目:Nephilidae)

阅读:5
作者:Alessandra D Whaite, Tianfang Wang, Joanne Macdonald, Scott F Cummins

Abstract

Natural spider silk is one of the world's toughest proteinaceous materials, yet a truly biomimetic spider silk is elusive even after several decades of intense focus. In this study, Next-Generation Sequencing was utilised to produce transcriptomes of the major ampullate gland of two Australian golden orb-weavers, Nephila plumipes and Nephila pilipes, in order to identify highly expressed predicted proteins that may co-factor in the construction of the final polymer. Furthermore, proteomics was performed by liquid chromatography tandem-mass spectroscopy to analyse the natural solid silk fibre of each species to confirm highly expressed predicted proteins within the silk gland are present in the final silk product. We assembled the silk gland transcriptomes of N. plumipes and N. pilipes into 69,812 and 70,123 contigs, respectively. Gene expression analysis revealed that silk gene sequences were among the most highly expressed and we were able to procure silk sequences from both species in excess of 1,300 amino acids. However, some of the genes with the highest expression values were not able to be identified from our proteomic analysis. Proteome analysis of "reeled" silk fibres of N. plumipes and N. pilipes revealed 29 and 18 proteins, respectively, most of which were identified as silk fibre proteins. This study is the first silk gland specific transcriptome and proteome analysis for these species and will assist in the future development of a biomimetic spider silk.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。