Constant light in early life induces fear-related behavior in chickens with suppressed melatonin secretion and disrupted hippocampal expression of clock- and BDNF-associated genes

生命早期的持续光照会诱发鸡的恐惧相关行为,抑制褪黑激素的分泌,并扰乱海马中时钟和 BDNF 相关基因的表达

阅读:7
作者:Yang Yang, Wei Cong, Jie Liu, Mindie Zhao, Peirong Xu, Wanwan Han, Deyun Wang, Ruqian Zhao

Background

Light management plays an important role in the growth and behavior of broiler chickens. Constant light in early post hatch stage has been a common practice in broiler industry for improving growth performance, while whether and how constant light in early life affects the behavior of broiler chickens is rarely reported.

Conclusions

These findings indicate that constant light exposure in early life suppress melatonin secretion and disrupts hippocampal expression of genes involved in circadian clock and BDNF/ERK pathway, thereby contributing to fear-related behaviors in the chicken.

Results

In this study, newly hatched chicks were kept in either constant (24 L:0 D, LL) or (12 L:12 D, LD) photoperiod for 7 d and then maintained in 12 L:12 D thereafter until 21 days of age. Constant light increased the average daily feed intake but not the body weight, which led to higher feed conversion ratio. Chickens in LL group exhibited fear-related behaviors, which was associated with higher corticosterone, lower melatonin and 5-HT levels. Concurrently, constant light exposure increased the mRNA expression of clock-related genes and suppressed the expression of antioxidative genes in the hippocampus. Moreover, brain derived neurotrophic factor/extracellular signal-regulated kinase (BDNF/ERK) pathway was suppressed in the hippocampus of chickens exposed to constant light in the first week post hatching. Conclusions: These findings indicate that constant light exposure in early life suppress melatonin secretion and disrupts hippocampal expression of genes involved in circadian clock and BDNF/ERK pathway, thereby contributing to fear-related behaviors in the chicken.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。