Branched actin networks are organized for asymmetric force production during clathrin-mediated endocytosis in mammalian cells

在哺乳动物细胞中,网格蛋白介导的内吞作用过程中,分支肌动蛋白网络被组织起来以产生不对称力

阅读:6
作者:Meiyan Jin #, Cyna Shirazinejad #, Bowen Wang, Amy Yan, Johannes Schöneberg, Srigokul Upadhyayula, Ke Xu, David G Drubin

Abstract

Actin assembly facilitates vesicle formation in several trafficking pathways, including clathrin-mediated endocytosis (CME). Interestingly, actin does not assemble at all CME sites in mammalian cells. How actin networks are organized with respect to mammalian CME sites and how assembly forces are harnessed, are not fully understood. Here, branched actin network geometry at CME sites was analyzed using three different advanced imaging approaches. When endocytic dynamics of unperturbed CME sites are compared, sites with actin assembly show a distinct signature, a delay between completion of coat expansion and vesicle scission, indicating that actin assembly occurs preferentially at stalled CME sites. In addition, N-WASP and the Arp2/3 complex are recruited to one side of CME sites, where they are positioned to stimulate asymmetric actin assembly and force production. We propose that actin assembles preferentially at stalled CME sites where it pulls vesicles into the cell asymmetrically, much as a bottle opener pulls off a bottle cap.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。