Modular Organization and Assembly of SWI/SNF Family Chromatin Remodeling Complexes

SWI/SNF家族染色质重塑复合物的模块化组织和组装

阅读:1
作者:Nazar Mashtalir ,Andrew R D'Avino ,Brittany C Michel ,Jie Luo ,Joshua Pan ,Jordan E Otto ,Hayley J Zullow ,Zachary M McKenzie ,Rachel L Kubiak ,Roodolph St Pierre ,Alfredo M Valencia ,Steven J Poynter ,Seth H Cassel ,Jeffrey A Ranish ,Cigall Kadoch

Abstract

Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes are multi-subunit molecular machines that play vital roles in regulating genomic architecture and are frequently disrupted in human cancer and developmental disorders. To date, the modular organization and pathways of assembly of these chromatin regulators remain unknown, presenting a major barrier to structural and functional determination. Here, we elucidate the architecture and assembly pathway across three classes of mSWI/SNF complexes-canonical BRG1/BRM-associated factor (BAF), polybromo-associated BAF (PBAF), and newly defined ncBAF complexes-and define the requirement of each subunit for complex formation and stability. Using affinity purification of endogenous complexes from mammalian and Drosophila cells coupled with cross-linking mass spectrometry (CX-MS) and mutagenesis, we uncover three distinct and evolutionarily conserved modules, their organization, and the temporal incorporation of these modules into each complete mSWI/SNF complex class. Finally, we map human disease-associated mutations within subunits and modules, defining specific topological regions that are affected upon subunit perturbation. Keywords: ATP-dependent chromatin remodeling; BAF complex; PBAF complex; SWI/SNF complex; cancer; cross-linking mass spectrometry; mutations; ncBAF complex; protein complex assembly; subunit organization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。