SMYD3-PARP16 axis accelerates unfolded protein response and mediates neointima formation

SMYD3-PARP16 轴加速未折叠蛋白反应并介导新生内膜形成

阅读:8
作者:Fen Long, Di Yang, Jinghua Wang, Qing Wang, Ting Ni, Gang Wei, Yizhun Zhu, Xinhua Liu

Abstract

Neointimal hyperplasia after vascular injury is a representative complication of restenosis. Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) is involved in the pathogenesis of vascular intimal hyperplasia. PARP16, a member of the poly(ADP-ribose) polymerases family, is correlated with the nuclear envelope and the ER. Here, we found that PERK and IRE1α are ADP-ribosylated by PARP16, and this might promote proliferation and migration of smooth muscle cells (SMCs) during the platelet-derived growth factor (PDGF)-BB stimulating. Using chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) analysis, PARP16 was identified as a novel target gene for histone H3 lysine 4 (H3K4) methyltransferase SMYD3, and SMYD3 could bind to the promoter of Parp16 and increased H3K4me3 level to activate its host gene's transcription, which causes UPR activation and SMC proliferation. Moreover, knockdown either of PARP16 or SMYD3 impeded the ER stress and SMC proliferation. On the contrary, overexpression of PARP16 induced ER stress and SMC proliferation and migration. In vivo depletion of PARP16 attenuated injury-induced neointimal hyperplasia by mediating UPR activation and neointimal SMC proliferation. This study identified SMYD3-PARP16 is a novel signal axis in regulating UPR and neointimal hyperplasia, and targeting this axis has implications in preventing neointimal hyperplasia related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。