Gut microbiota mediates the effects of curcumin on enhancing Ucp1-dependent thermogenesis and improving high-fat diet-induced obesity

肠道菌群介导姜黄素增强 Ucp1 依赖性产热作用并改善高脂饮食引起的肥胖

阅读:4
作者:Zaiqi Han, Lu Yao, Yue Zhong, Yang Xiao, Jing Gao, Zhaozheng Zheng, Sijia Fan, Ziheng Zhang, Shanggang Gong, Sheng Chang, Xiaona Cui, Jianhui Cai

Abstract

Due to extremely poor systemic bioavailability, the mechanism by which curcumin increases energy expenditure remains unelucidated. Accumulating evidence suggests a strong association between the gut microbiota (GM) and energy metabolism. We investigated whether the GM mediates the effects of curcumin on improving energy homeostasis. High-fat diet (HFD)-fed wild type, uncoupling protein 1 (Ucp1) knockout and G protein-coupled membrane receptor 5 (TGR5) knockout mice were treated with curcumin (100 mg kg-1 d-1, p.o.). Curcumin-treated HFD-fed mice displayed decreased body weight gain and augmented cold tolerance due to enhanced adaptive thermogenesis as compared with that in control mice. The anti-obesity effects of curcumin were abolished by Ucp1 knockout. 16S ribosomal DNA sequencing analysis revealed that curcumin restructured the GM in HFD-fed mice. Fecal microbiota transplantation (FMT) and endogenous GM depletion indicated that the GM mediated the enhanced effect of curcumin on Ucp1-dependent thermogenesis. Curcumin altered bile acid (BA) metabolism with increased fractions of circulating deoxycholic acid (DCA) and lithocholic acid (LCA), which are the two most potent ligands for TGR5. Consistently, the enhanced effect of curcumin on Ucp1-dependent thermogenesis was eliminated by TGR5 knockout. Curcumin requires the GM and TGR5 to activate the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway in thermogenic adipose tissue. Here, we demonstrated that the GM mediates the effects of curcumin on enhancing Ucp1-dependent thermogenesis and ameliorating HFD-induced obesity by influencing BA metabolism. We disclosed the potential of nutritional and pharmacologic manipulations of the GM to enhance Ucp1-dependent thermogenesis in the prevention and treatment of obesity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。