Biogenic Volatile Organic Compounds and Protein Expressions of Chamaecyparis formosensis and Chamaecyparis obtusa var. formosana Leaves under Different Light Intensities and Temperatures

不同光照强度和温度下台湾扁柏和日本扁柏叶片生物源挥发性有机化合物和蛋白质表达

阅读:6
作者:Ying-Ju Chen, Ya-Lun Huang, Yu-Han Chen, Shang-Tzen Chang, Ting-Feng Yeh

Abstract

Both Chamaecyparis formosensis and C. obtusa var. formosana are representative cypresses of high economic value in Taiwan, the southernmost subtropical region where cypresses are found. Both species show differences of their habitats. To find out the effects of environmental factors on the CO2 assimilation rate and the biogenic volatile organic compound (BVOC) emission of both species, saplings from both species were grown under different light intensity and temperature regimes. The results indicated that the net CO2 assimilation rates and total BVOC emission rates of both species increased with increasing light intensity. C. formosensis showed a higher magnitude of change, but C. obtusa var. formosana had considerably increased sesquiterpenoid and diterpenoid emission in BVOC under high light intensity. Both species grown under higher temperatures had significantly lower BVOC emission rates. Proteomic analyses revealed that compared to C. formosensis saplings, C. obtusa var. formosana saplings had less differentially expressed proteins in terms of protein species and fold changes in response to the growth conditions. These proteins participated mainly in photosynthesis, carbon metabolism, amino acid and protein processing, signal transduction, and stress mechanisms. These proteins might be the major regulatory factors affecting BVOC emission of these two species under different environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。