Chondrocytes differentiated from human induced pluripotent stem cells: Response to ionizing radiation

由人类诱导性多能干细胞分化而来的软骨细胞:对电离辐射的反应

阅读:3
作者:Ewelina Stelcer, Katarzyna Kulcenty, Wiktoria Maria Suchorska

Conclusions

The chondrocyte-like cells derived from hiPSC demonstrated features characteristic of both mature chondrocytes and "parental" hiPSCs. The main difference between hiPSC-derived chondrocytes and hiPSCs and mature chondrocytes appears to be the more efficient DDR mechanism of hiPSC-DCHs. The unique properties of these cells suggest that they could potentially be used safely in regenerative medicine if these preliminary findings are confirmed in future studies.

Purpose

Data on the response of chondrocytes differentiated from hiPSCs (hiPSC-DCHs) to ionizing radiation (IR) are lacking. The aim of present study was to assess DNA damage response (DDR) mechanisms of IR-treated hiPSC-DCHs.

Results

DNA DSBs were observed in 30% of the hiPSC-DCHs overall, and in 60% after high-dose (> 2 Gy) IR. Nevertheless, these cells displayed efficient DNA repair mechanisms, which reduced the DSBs over time until it reached 30% by activating key genes involved in homologous recombination and non-homologous end joining mechanisms. As similar to mature chondrocytes, irradiated hiPSC-DCH cells revealed accumulation of cells in G2 phase. Overall, the hiPSC-DCH cells were characterized by low levels of ROS, cPARP and high levels of senescence. Conclusions: The chondrocyte-like cells derived from hiPSC demonstrated features characteristic of both mature chondrocytes and "parental" hiPSCs. The main difference between hiPSC-derived chondrocytes and hiPSCs and mature chondrocytes appears to be the more efficient DDR mechanism of hiPSC-DCHs. The unique properties of these cells suggest that they could potentially be used safely in regenerative medicine if these preliminary findings are confirmed in future studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。