Multiple genes on chromosome 7 regulate dopaminergic amacrine cell number in the mouse retina

号染色体上的多个基因调节小鼠视网膜多巴胺能无长突细胞的数量

阅读:4
作者:Irene E Whitney, Mary A Raven, Daniel C Ciobanu, Robert W Williams, Benjamin E Reese

Conclusions

Multiple polymorphic genes on Chr 7 modulate the size of the population of DA cells.

Methods

The entire population was counted in retinal wholemounts from 37 genetically defined lines of mice, including six standard inbred strains, 25 recombinant inbred strains (AXB/BXA), reciprocal F1 hybrids, a chromosome (Chr) 7 consomic line, and three additional genetically modified lines.

Purpose

The size of neuronal populations is modulated by gene variants that influence cell production and survival, in turn influencing neuronal connectivity, function, and disease risk. The size of the dopaminergic amacrine (DA) cell population is a highly heritable trait exhibiting sixfold variation among inbred strains of mice and is used here to identify genes that modulate the number of DA cells.

Results

Much of this variation was mapped to a broad locus on Chr 7 (Dopaminergic amacrine cell number control, Chr 7 [Dacnc7]). The Dacnc7 locus is flanked by two candidate genes known to modulate the number of other types of retinal neuron-the proapoptotic gene, Bax, and tyrosinase. The Tyr mutation was shown to modulate DA cell number modestly, though in the direction opposite that predicted. In contrast, Bax deficiency increased the population fourfold. Bax expression was significantly greater in the A/J than in the C57BL/6J strain, an effect that may be attributed to an SNP in a p53 consensus binding site known to modulate transcription. Finally, we note a strong candidate situated at the peak of the Dacnc7 locus, Lrrk1, a Parkinson's disease gene exhibiting missense mutations segregating within the AXB/BXA cross. Conclusions: Multiple polymorphic genes on Chr 7 modulate the size of the population of DA cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。