Ex Vivo-Induced Bone Marrow-Derived Myeloid Suppressor Cells Prevent Corneal Allograft Rejection in Mice

体外诱导的骨髓来源的髓系抑制细胞可预防小鼠角膜移植排斥

阅读:8
作者:Jun Zhu, Takenori Inomata, Keiichi Fujimoto, Koichiro Uchida, Kenta Fujio, Ken Nagino, Maria Miura, Naoko Negishi, Yuichi Okumura, Yasutsugu Akasaki, Kunihiko Hirosawa, Mizu Kuwahara, Atsuko Eguchi, Hurramhon Shokirova, Ai Yanagawa, Akie Midorikawa-Inomata, Akira Murakami

Conclusions

The ex vivo-induced BM-MDSCs have suppressive effects on allogeneic immune responses and prolong corneal allograft survival via the iNOS pathway, indicating that they may be a potential therapeutic tool for corneal transplantation.

Methods

Bone marrow cells from C57BL/6J (B6) mice were cultured with IL-6 and GM-CSF for four days. The ex vivo induction of the BM-MDSCs was assessed using flow cytometry, inducible nitric oxide synthase (iNOS) mRNA expression using reverse transcription-quantitative polymerase chain reaction, and nitric oxide (NO) production in allogeneic stimulation. T-cell proliferation and regulatory T-cell (Treg) expansion were investigated on allogeneic stimulation in the presence of ex vivo-induced BM-MDSCs. IFN-γ, IL-2, IL-10, and TGF-β1 protein levels were measured using enzyme-linked immunosorbent assays. After subconjunctival injection of ex vivo-induced BM-MDSCs, the migration of the BM-MDSCs into corneal grafts, allogeneic corneal graft survival, neovascularization, and lymphangiogenesis were assessed using flow cytometry, slit-lamp microscopy, and immunohistochemistry.

Purpose

To investigate the effects of ex vivo-induced bone marrow myeloid-derived suppressor cells (BM-MDSCs) on allogeneic immune responses in corneal transplantation.

Results

The combination of GM-CSF and IL-6 significantly induced BM-MDSCs with increased iNos mRNA expression. The ex vivo-induced BM-MDSCs promoted NO release in allogeneic stimulation in vitro. The ex vivo-induced BM-MDSCs inhibited T-cell proliferation and promoted Treg expansion. Decreased IFN-γ and increased IL-2, IL-10, and TGF-β1 production was observed in coculture of ex vivo-induced BM-MDSCs. Injected ex vivo-induced BM-MDSCs were confirmed to migrate into the grafts. The injected BM-MDSCs also prolonged corneal graft survival and prevented angiogenesis and lymphangiogenesis. Conclusions: The ex vivo-induced BM-MDSCs have suppressive effects on allogeneic immune responses and prolong corneal allograft survival via the iNOS pathway, indicating that they may be a potential therapeutic tool for corneal transplantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。