Development of new bioabsorbable implants with de novo adipogenesis

利用从头脂肪生成技术开发新型生物可吸收植入物

阅读:6
作者:Qiannan Zhao, Shuichi Ogino, Sunghee Lee, Yuki Kato, Yuanjiaozi Li, Michiharu Sakamoto, Hiroki Yamanaka, Takashi Nakano, Eiichi Sawaragi, Naoki Morimoto

Abstract

Poly-L-lactic acid (PLLA) mesh implants containing collagen sponge (CS) were replaced with autologous adipose tissue regeneration in vivo. Herein, we investigated the optimal external frames and internal fillings using poly (lactic-co-ε-caprolactone) (P (LA/CL)), PLLA, and low-molecular-weight PLLA (LMW-PLLA) as the external frame and polyglycolic acid (PGA) nanosheets and CS as the internal filling. We prepared six implants: P (LA/CL) with PGA nano, PLLA with PGA nano, PLLA with CS, PLLA with 1/2 CS, PLLA with 1/4 CS, and LMW-PLLA with CS, and evaluated adipogenesis at 6 and 12 months using a rat inguinal model. The internal spaces in the P (LA/CL) and LMW-PLLA implants collapsed at 6 months, whereas those in the other four implants collapsed at 12 months. Adipose tissue regeneration was not significantly different between the PLLA-implanted groups at 6 and 12 months and was greater than that in the P (LA/CL) with PGA nano and LMW-PLLA with CS groups. The PGA nanosheet inside PLLA was comparable to the CS inside PLLA in the regeneration of adipose tissue and macrophage infiltration. In summary, PLLA is a promising external frame material in which the internal space can be replaced with adipose tissue. Thus, PGA nanosheets are an alternative internal filling material for adipose tissue regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。