Regional variations in the cellular, biochemical, and biomechanical characteristics of rabbit annulus fibrosus

兔纤维环细胞、生化和生物力学特征的区域差异

阅读:1
作者:Jun Li ,Chen Liu ,Qianping Guo ,Huilin Yang ,Bin Li

Abstract

Tissue engineering of annulus fibrosus (AF), the essential load-bearing disc component, remains challenging due to the intrinsic heterogeneity of AF tissue. In order to provide a set of characterization data of AF tissue, which serve as the benchmark for constructing tissue engineered AF, we analyzed tissues and cells from various radial zones of AF, i.e., inner AF (iAF), middle AF (mAF), and outer AF (oAF), using a rabbit model. We found that a radial gradient in the cellular, biochemical, and biomechanical characteristics of rabbit AF existed. Specifically, the iAF cells (iAFCs) had the highest expression of collagen-II and aggrecan genes, while oAF cells (oAFCs) had the highest collagen-I gene expression. The contents of DNA, total collagen and collagen-I sequentially increased from iAF, mAF to oAF, while glycosaminoglycan (GAG) and collagen-II levels decreased. The cell traction forces of primary AFCs gradually decreased from iAFCs, mAFCs to oAFCs, being 336.6±155.3, 199.0±158.8, and 123.8±76.1 Pa, respectively. The storage moduli of iAF, mAF, and oAF were 0.032±0.002, 2.121±0.656, and 4.130±0.159 MPa, respectively. These measurements have established a set of reference data for functional evaluation of the efficacy of AF tissue engineering strategies using a convenient and cost-effective rabbit model, the findings of which may be further translated to human research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。