Biosensor detection systems: engineering stable, high-affinity bioreceptors by yeast surface display

生物传感器检测系统:通过酵母表面展示设计稳定、高亲和力的生物受体

阅读:6
作者:Sarah A Richman, David M Kranz, Jennifer D Stone

Abstract

Over the past two decades, the field of biosensors has been developing fast, portable, and convenient detection tools for various molecules of interest, both biological and environmental. Although much attention is paid to the transduction portion of the sensor, the actual bioreceptor that binds the ligand is equally critical. Tight, specific binding by the bioreceptor is required to detect low levels of the relevant ligand, and the bioreceptor must be stable enough to survive immobilization, storage, and in ideal cases, regeneration on the biosensing device. Often, naturally-occurring bioreceptors or antibodies that are specific for a ligand either express affinities that may be too low to detect useful levels, or the proteins are too unstable to be used and reused as a biosensor. Further engineering of these receptors can improve their utility. Here, we describe in detail the use of yeast surface display techniques to carry out directed evolution of bioreceptors to increase both the stability of the molecules and their affinity for the ligands. This powerful technique has enabled the production of stabilized, single-chain antibodies, T cell receptors, and other binding molecules that exhibit affinity increases for their ligands of up to 1 million-fold and expression of stable molecules in E. coli.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。