KPNB1 Inhibitor Importazole Reduces Ionizing Radiation-Increased Cell Surface PD-L1 Expression by Modulating Expression and Nuclear Import of IRF1

KPNB1 抑制剂 Importazole 通过调节 IRF1 的表达和核输入来降低电离辐射增加的细胞表面 PD-L1 表达

阅读:8
作者:Hironori Yoshino, Yoshiaki Sato, Manabu Nakano

Abstract

Programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule that negatively regulates anti-tumor immunity. Recent reports indicate that anti-cancer treatments, such as radiation therapy, increase PD-L1 expression on the surface of tumor cells. We previously reported that the nuclear transport receptor karyopherin-β1 (KPNB1) is involved in radiation-increased PD-L1 expression on head-and-neck squamous cell carcinoma cells. However, the mechanisms underlying KPNB1-mediated, radiation-increased PD-L1 expression remain unknown. Thus, the mechanisms of radiation-increased, KPNB1-mediated PD-L1 expression were investigated by focusing on the transcription factor interferon regulatory factor 1 (IRF1), which is reported to regulate PD-L1 expression. Western blot analysis showed that radiation increased IRF1 expression. In addition, flow cytometry showed that IRF1 knockdown decreased cell surface PD-L1 expression of irradiated cells but had a limited effect on non-irradiated cells. These findings suggest that the upregulation of IRF1 after irradiation is required for radiation-increased PD-L1 expression. Notably, immunofluorescence and western blot analyses revealed that KPNB1 inhibitor importazole not only diffused nuclear localization of IRF1 but also decreased IRF1 upregulation by irradiation, which attenuated radiation-increased PD-L1 expression. Taken together, these findings suggest that KPNB1 mediates radiation-increased cell surface PD-L1 expression through both upregulation and nuclear import of IRF1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。