Inhibition of calpain delays early muscle atrophy after rotator cuff tendon release in sheep

抑制钙蛋白酶可延缓绵羊肩袖肌腱释放后的早期肌肉萎缩

阅读:8
作者:Severin Ruoss, Philipp Kindt, Linus Oberholzer, Marco Rohner, Ladina Jungck, Sara Abdel-Aziz, Daniel Fitze, Andrea B Rosskopf, Karina Klein, Brigitte von Rechenberg, Christian Gerber, Karl Wieser, Martin Flück

Abstract

Chronic rotator cuff (RC) tears are characterized by retraction, fat accumulation, and atrophy of the affected muscle. These features pose an intractable problem for surgical repair and subsequent recovery, and their prevention may be easier than reversal. Using an established ovine model, we tested the hypothesis that inhibition of the protease calpain mitigates m. infraspinatus atrophy by preservation of the myofibers' structural anchors in the sarcolemma (the costameres). Already 2 weeks of distal tendon release led to a reduction in muscle volume (-11.6 ± 9.1 cm3 , P = 0.038) and a 8.3% slow-to-fast shift of the fiber area (P = 0.046), which were both entirely abolished by chronic local administration of the calpain inhibitor calpeptin alone, and in combination with sildenafil. Calpain inhibition blunted the retraction of the muscle-tendon unit by 0.8-1.0 cm (P = 0.020) compared with the control group, and prevented cleavage of the costameric protein talin. Calpain 1 and 2 protein levels increased in the medicated groups after 4 weeks, counteracting the efficacy of calpeptin. Hence atrophic changes emerged after 4 weeks despite ongoing treatment. These findings suggest that the early muscular adaptations in the specific case of RC tear in the ovine model are indistinguishable from the atrophy and slow-to-fast fiber transformation observed with conventional unloading and can be prevented for 2 weeks. Concluding, calpain is a potential target to extend the temporal window for reconstruction of the ruptured RC tendon before recovery turns impossible.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。