Role for Fgr and Numb in retinoic acid-induced differentiation and G0 arrest of non-APL AML cells

Fgr 和 Numb 在视黄酸诱导的非 APL AML 细胞分化和 G0 停滞中的作用

阅读:7
作者:Noor Kazim, Andrew Yen

Abstract

Retinoic acid (RA) is a fundamental regulator of cell cycle and cell differentiation. Using a leukemic patient-derived in vitro model of a non-APL AML, we previously found that RA evokes activation of a macromolecular signaling complex, a signalosome, built of numerous MAPK-pathway-related signaling molecules; and this signaling enabled Retinoic-Acid-Response-Elements (RAREs) to regulate gene expression that results in cell differentiation/cell cycle arrest. Toward mechanistic insight into the nature of this novel signaling, we now find that the NUMB cell fate determinant protein is an apparent scaffold for the signalosome. Numb exists in the cell bound to an ensemble of signalosome molecules, including Raf, Lyn, Slp-76, and Vav. Addition of RA induces the expression of Fgr. Fgr binds NUMB, which is associated with (p-tyr)phosphorylation of NUMB and enhanced NUMB-binding and (p-tyr)phosphorylation of select signalosome components, thereby betraying signalosome activation. Signalosome activation is associated with cell differentiation along the myeloid lineage and G1/0 cell cycle arrest. If RA-induced Fgr expression is ablated by a CRISPR-KO; then the RA-induced (p-tyr) phosphorylation of NUMB and enhanced NUMB-binding and (p-tyr)phosphorylation of select signalosome components are lost. The cells now fail to undergo RA-induced differentiation or G1/0 arrest. In sum we find that NUMB acts as a scaffold for a signaling machine that functions to propel RA-induced differentiation and G1/0 arrest, and that Fgr binding to NUMB turns the function on. The Numb fate determinant protein thus appears to regulate the retinoic acid embryonic morphogen using the Fgr Src-Family-Kinase. These mechanistic insights suggest therapeutic targets for a hitherto incurable AML.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。