Maca extracts regulate glucose and lipid metabolism in insulin-resistant HepG2 cells via the PI3K/AKT signalling pathway

玛卡提取物通过 PI3K/AKT 信号通路调节胰岛素抵抗 HepG2 细胞的葡萄糖和脂质代谢

阅读:7
作者:Aimin Li, Jia Liu, Fangli Ding, Xiaolei Wu, Cong Pan, Qing Wang, Ming Gao, Shenglin Duan, Xiaofeng Han, Kai Xia, Shiwei Liu, Yimin Wu, Zhiqiao Zhou, Xi Zhang, Xiao-Dong Gao

Abstract

This work focused on the separation of the active ingredients of maca (Lepidium meyenii Walpers) and evaluated the antioxidative capability of these components with effects on improving glucose and lipid metabolism in insulin-resistant HepG2 cells. DPPH free radical scavenging and reducing power assays were used to evaluate the antioxidant activity of maca extracts. An insulin-resistant HepG2 cell model induced by glucose, fructose, oleic acid, and palmitic acid was adopted to investigate the effects of maca extracts on regulating glucose and lipid metabolism in this study. LC-MS/MS was then used for determination of the maca n-butanol (NBT) subfraction. The results showed that maca ethanol extract and subfractions of this extract exhibited certain antioxidant capacity. Furthermore, the NBT subfraction reversed the disorders in glucose and lipid metabolism in insulin-resistant HepG2 cells and significantly increased the mRNA expression of phosphoinositide 3-kinases (PI3K) and AKT in insulin-resistant HepG2 cells in a dose-dependent manner. In addition, the LC-MS/MS results showed that the NBT subfraction contained many active ingredients. Overall, this study suggests that the NBT subfraction of the ethanol extract rich in glucosinolates modulates insulin resistance via PI3K/AKT activation in insulin-resistant HepG2 cells and might exert potentially beneficial effects in improving or treating glucose and lipid metabolic disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。