An injectable co-assembled hydrogel blocks reactive oxygen species and inflammation cycle resisting myocardial ischemia-reperfusion injury

可注射共组装水凝胶阻断活性氧和炎症循环,抵抗心肌缺血再灌注损伤

阅读:5
作者:Xu Liao, Xudong Song, Jiejing Li, Lisha Li, Xianglin Fan, Qin Qin, Chongbin Zhong, Pingzhen Yang, Jie Zhan, Yanbin Cai

Significance

1. Monotherapeutic strategies designed to enhance anti-inflammatory or anti-ROS effects for treating I/R injury have demonstrated limited success because of the complex mechanisms of ROS and inflammation. 2. ROS production and inflammation form a vicious cycle, and ROS and TLR4 are critical nodes of this cycle. 3. Here, we designed an injectable hydrogel system of EGCG@Rh-gel by co-assembling epigallocatechin-3-gallate (EGCG) and a rhein-peptide hydrogel (Rh-gel). EGCG@Rh-gel efficiently blocked the ROS-inflammation cycle by ROS scavenging and TLR4 inhibition. 4. EGCG@Rh-gel achieved long-term sustained release and treatment, improved cardiac function, and significantly reduced the formation of scarring after I/R. 5. The beneficial outcomes arise from reducing ROS production, inhibiting inflammation, and inducing anti-apoptosis in cardiomyocytes.

Statement of significance

1. Monotherapeutic strategies designed to enhance anti-inflammatory or anti-ROS effects for treating I/R injury have demonstrated limited success because of the complex mechanisms of ROS and inflammation. 2. ROS production and inflammation form a vicious cycle, and ROS and TLR4 are critical nodes of this cycle. 3. Here, we designed an injectable hydrogel system of EGCG@Rh-gel by co-assembling epigallocatechin-3-gallate (EGCG) and a rhein-peptide hydrogel (Rh-gel). EGCG@Rh-gel efficiently blocked the ROS-inflammation cycle by ROS scavenging and TLR4 inhibition. 4. EGCG@Rh-gel achieved long-term sustained release and treatment, improved cardiac function, and significantly reduced the formation of scarring after I/R. 5. The beneficial outcomes arise from reducing ROS production, inhibiting inflammation, and inducing anti-apoptosis in cardiomyocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。