Intestinal iron absorption is appropriately modulated to match physiological demand for iron in wild-type and iron-loaded Hamp (hepcidin) knockout rats during acute colitis

在急性结肠炎期间,野生型和铁负荷的 Hamp(铁调素)基因敲除大鼠的肠道铁吸收得到适当调节,以满足对铁的生理需求

阅读:3
作者:Shireen R L Flores, Savannah Nelson, Regina R Woloshun, Xiaoyu Wang, Jung-Heun Ha, Jennifer K Lee, Yang Yu, Didier Merlin, James F Collins

Abstract

Mucosal damage, barrier breach, inflammation, and iron-deficiency anemia (IDA) typify ulcerative colitis (UC) in humans. The anemia in UC appears to mainly relate to systemic inflammation. The pathogenesis of this 'anemia of inflammation' (AI) involves cytokine-mediated transactivation of hepatic Hamp (encoding the iron-regulatory hormone, hepcidin). In AI, high hepcidin represses iron absorption (and iron release from stores), thus lowering serum iron, and restricting iron for erythropoiesis (causing anemia). In less-severe disease states, inflammation may be limited to the intestine, but whether this perturbs iron homeostasis is uncertain. We hypothesized that localized gut inflammation will increase overall iron demand (to support the immune response and tissue repair), and that hepatic Hamp expression will decrease in response, thus derepressing (i.e., enhancing) iron absorption. Accordingly, we developed a rat model of mild, acute colitis, and studied iron absorption and homeostasis. Rats exposed (orally) to DSS (4%) for 7 days had intestinal (but not systemic) inflammation, and biomarker analyses demonstrated that iron utilization was elevated. Iron absorption was enhanced (by 2-3-fold) in DSS-treated, WT rats of both sexes, but unexpectedly, hepatic Hamp expression was not suppressed. Therefore, to gain a better understanding of regulation of iron absorption during acute colitis, Hamp KO rats were used for further experimentation. The severity of DSS-colitis was similar in Hamp KOs as in WT controls. In the KOs, increased iron requirements associated with the physiological response to colitis were satisfied by mobilizing hepatic storage iron, rather than by increasing absorption of enteral iron (as occurred in WT rats). In conclusion then, in both sexes and genotypes of rats, iron absorption was appropriately modulated to match physiological demand for dietary iron during acute intestinal inflammation, but regulatory mechanisms may not involve hepcidin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。