Melatonin protects against nonylphenol caused pancreatic β-cells damage through MDM2-P53-P21 axis

褪黑素通过 MDM2-P53-P21 轴保护胰腺 β 细胞免受壬基酚引起的损伤

阅读:4
作者:Shasha Tao, Youjing Yang, Yayun Fan, Kaimiao Chu, Jiaojiao Sun, Qianqian Wu, Aiqing Wang, Jianmei Wan, Hailin Tian

Abstract

Nonylphenol (NP) is an endocrine disrupting chemical, which widely exists in environment and can result in multiple system dysfunction. Pancreas as one of the most important organs is sensitive to NP, while the detail toxic effect is still less studied. Previously, we unveiled nonylphenol causes pancreatic damage in rats, herein, we further explore the potential mechanism and seek protection strategy in vitro. Insulinoma (INS-1) cells exposed to NP were observed to suffer oxidative stress and mitochondrial dysfunction, as reflected by the abnormal levels of reactive oxygen species, malonic dialdehyde, superoxide dismutase, Ca2+, and mitochondrial membrane potential. Melatonin (MT) was found to alleviate NP-induced mitochondrial dysfunction and oxidative stress, further inhibit apoptosis and restore pancreas function. Mechanically, MT induced the MDM2-P53-P21 signaling, which upregulated the Nrf2 signaling pathway. In summary, our study clarified NP-induced INS-1 cells mitochondrial dysfunction and oxidative stress, which could be ameliorated by MT through MDM2-P53-P21 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。