An Open-Label, Uncontrolled, Single-Arm Clinical Trial of Tofacitinib, an Oral JAK1 and JAK3 Kinase Inhibitor, in Chinese Patients with Keloid

托法替尼(一种口服 JAK1 和 JAK3 激酶抑制剂)治疗中国瘢痕疙瘩患者的开放标签、非对照、单组临床试验

阅读:6
作者:Jun-Yi Chen, Qing-Lan Feng, Hui-Hui Pan, Ding-Heng Zhu, Ren-Liang He, Cheng-Cheng Deng, Bin Yang

Background

The keloid treatment is still a thorny and complicated clinical problem, especially in multiple keloids induced by wound, severe burn, ethnic background or cultural behaviors, or unexplained skin healing. Mainstream treatments have limited efficacy in treating multiple keloids. As no oral treatment with painlessness and convenience is available, oral treatment strategies should be formulated. Objectives: This study aimed to investigate the efficacy and therapeutic mechanism of oral tofacitinib in keloid patients.

Conclusion

Tofacitinib, a new candidate oral drug for keloid, could reduce keloid lesion volume by inhibiting collagen synthesis and inhibiting fibroblast proliferation, and alleviate itch and pain to obtain a better life quality.

Methods

We recruited the 7 patients with keloid scars and prescribed 5 mg of tofacitinib twice a day orally with a maximum follow-up of 12 weeks. The Patient and Observer Scar Assessment Scale (POSAS), the Vancouver scar scale (VSS), ANTERA 3D camera, and the DUB Skin Scanner 75 were used to assess the characteristics of the lesion. Immunohistochemistry was performed to evaluate collagen synthesis, proliferation, and relative molecular pathways. Moreover, the effects of tofacitinib were assessed on keloid fibroblast in vitro.

Results

After 12 weeks of oral tofacitinib, significant improvement in POSAS, VSS, and Dermatology Life Quality Index (DLQI) scores was observed (p < 0.05). The volume, lesion height, and dermis thickness of the keloid decreased (p < 0.05). Moreover, significant decreases in the expression of collagen I, Ki67, p-STAT 3, and p-SMAD2 were observed after 12 weeks of administration. In vitro experiments suggested that tofacitinib treatment inhibits fibroblast proliferation and collagen I synthesis via suppression of STAT3 and SMAD2 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。