PI3K oncogenic mutations mediate resistance to afatinib in HER2/neu overexpressing gynecological cancers

PI3K 致癌突变介导 HER2/neu 过度表达的妇科癌症对阿法替尼产生耐药性

阅读:6
作者:Elena Bonazzoli, Emiliano Cocco, Salvatore Lopez, Stefania Bellone, Luca Zammataro, Anna Bianchi, Aranzazu Manzano, Ghanshyam Yadav, Paola Manara, Emanuele Perrone, Kaitlin Haines, Mariana Espinal, Katherine Dugan, Gulden Menderes, Gary Altwerger, Chanhee Han, Burak Zeybek, Babak Litkouhi, Elena Rat

Conclusions

Oncogenic PI3K mutations may represent a major mechanism of resistance to afatinib. Combinations of c-erb with PIK3CA, AKT or mTOR inhibitors may be necessary to more efficiently block the PIK3CA/AKT/mTOR pathway.

Methods

We used six whole-exome-sequenced primary HGSOC/USC cell-lines and three xenografts overexpressing HER2/neu and harboring mutated or wild-type PIK3CA/PIK3R1 genes to evaluate the role of PI3K-mutations as potential mechanism of resistance to afatinib, an FDA-approved pan-c-erb-inhibitor in clinical trials in USC. Primary-USC harboring wild-type-PIK3CA gene was transfected with plasmids encoding oncogenic PIK3CA-mutations (H1047R/E545K). The effect of afatinib on HER2/PI3K/AKT/mTOR pathway was evaluated by immunoblotting.

Objective

Aberrant expression of HER2/neu and PIK3CA gene products secondary to amplification/mutations are common in high-grade-serous-endometrial (USC) and ovarian-cancers (HGSOC). Because scant information is currently available in the literature on the potential negative effect of PIK3CA mutations on the activity of afatinib, in this study we evaluate for the first time the role of oncogenic PIK3CA mutations as a potential mechanism of resistance to afatinib in HGSOC and USC overexpressing HER2/neu.

Results

We found PI3K wild-type cell-lines to be significantly more sensitive (lower IC50) than PI3K-mutated cell-lines p = 0.004). In vivo, xenografts of primary cell-line USC-ARK2, transfected with the PIK3CA-H1047R or E545K hotspot-mutations, exhibited significantly more rapid tumor growth when treated with afatinib, compared to mice harboring ARK2-tumors transfected with wild-type-PIK3CA (p = 0.041 and 0.001, respectively). By western-blot, afatinib effectively reduced total and phospho-HER2 proteins in all cell-lines. However, H1047R/E545K-PIK3CA-transfected-ARK2-cells demonstrated a greater compensatory increase in phosphorylated-AKT proteins after afatinib exposure when compared to controls ARK2. Conclusions: Oncogenic PI3K mutations may represent a major mechanism of resistance to afatinib. Combinations of c-erb with PIK3CA, AKT or mTOR inhibitors may be necessary to more efficiently block the PIK3CA/AKT/mTOR pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。