Lipopolysaccharide-Induced TRPA1 Upregulation in Trigeminal Neurons is Dependent on TLR4 and Vesicular Exocytosis

脂多糖诱导的三叉神经元 TRPA1 上调依赖于 TLR4 和囊泡胞吐

阅读:6
作者:Benoit Michot, Sharon M Casey, Caroline S Lee, Ozge Erdogan, Himanish Basu, Isaac Chiu, Jennifer L Gibbs

Abstract

Pain from bacterial infection was believed to be the consequence of inflammation induced by bacterial products. However recent studies have shown that bacterial products can directly activate sensory neurons and induce pain. The mechanisms by which bacteria induce pain are poorly understood, but toll-like receptor (TLR)4 and transient receptor potential A1 (TRPA1) receptors are likely important integrators of pain signaling induced by bacteria. Using male and female mice we show that sensory neuron activation by bacterial lipopolysaccharides (LPS) is mediated by both TRPA1 and TLR4 and involves the mobilization of extracellular and intracellular calcium. We also show that LPS induces neuronal sensitization in a process dependent on TLR4 receptors. Moreover, we show that TLR4 and TRPA1 are both involved in sensory neurons response to LPS stimulation. Activation of TLR4 in a subset of sensory neurons induces TRPA1 upregulation at the cell membrane through vesicular exocytosis, contributing to the initiation of neuronal sensitization and pain. Collectively these data highlight the importance of sensory neurons to pathogen detection, and their activation by bacterial products like LPS as potentially important to early immune and nociceptive responses.SIGNIFICANCE STATEMENT Bacterial infections are often painful and the recent discovery that bacteria can directly stimulate sensory neurons leading to pain sensation and modulation of immune system have highlighted the importance of nervous system in the response to bacterial infection. Here, we showed that lipopolysaccharide, a major bacterial by-product, requires both toll-like receptor (TLR)4 and transient receptor potential A1 (TRPA1) receptors for neuronal activation and acute spontaneous pain, but only TLR4 mediates sensory neurons sensitization. Moreover, we showed for the first time that TLR4 sensitize sensory neurons through a rapid upregulation of TRPA1 via vesicular exocytosis. Our data highlight the importance of sensory neurons to pathogen detection and suggests that TLR4 would be a potential therapeutic target to modulate early stage of bacteria-induced pain and immune response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。