Reduced Defects and Enhanced Performance of (FAPbI3)0.97(MAPbBr3)0.03-Based Perovskite Solar Cells by Trimesic Acid Additives

通过添加均苯三酸减少 (FAPbI3)0.97(MAPbBr3)0.03 基钙钛矿太阳能电池的缺陷并提高性能

阅读:4
作者:Hoang V Quy, Dang H Truyen, Sangmo Kim, Chung W Bark

Abstract

A high-quality organolead trihalide perovskite film with large-sized crystalline grains and smooth surfaces is required to obtain efficient perovskite solar cells (PSCs). Herein, high-quality (FAPbI3)0.97(MAPbBr3)0.03 perovskite films were fabricated using trimesic acid (TMA) additives in a halide perovskite precursor solution to obtain efficient PSCs. The X-ray diffraction analysis and scanning electron microscopy of the films revealed that the TMA had a significant effect on the roughness of the films by acting as a surface link, thus reducing the surface defects and recombination at the grain boundaries. In addition, with the addition of the TMA additive, a smooth perovskite film with a flat surface and no pinholes was obtained. The perovskite film was used to fabricate a PSC device, and the device exhibited a high power conversion efficiency of 17.26%, which was higher than that of the control device (15.15%) under the same conditions. This study demonstrates a facile method to passivate defects on the perovskite layer via surface modification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。