Protein Prenylation and Hsp40 in Thermotolerance of Plasmodium falciparum Malaria Parasites

蛋白质异戊烯化和 Hsp40 与恶性疟原虫耐热性的关系

阅读:4
作者:Emily S Mathews, Andrew J Jezewski, Audrey R Odom John

Abstract

During its complex life cycle, the malaria parasite survives dramatic environmental stresses, including large temperature shifts. Protein prenylation is required during asexual replication of Plasmodium falciparum, and the canonical heat shock protein 40 protein (HSP40; PF3D7_1437900) is posttranslationally modified with a 15-carbon farnesyl isoprenyl group. In other organisms, farnesylation of Hsp40 orthologs controls their localization and function in resisting environmental stress. In this work, we find that plastidial isopentenyl pyrophosphate (IPP) synthesis and protein farnesylation are required for malaria parasite survival after cold and heat shock. Furthermore, loss of HSP40 farnesylation alters its membrane attachment and interaction with proteins in essential pathways in the parasite. Together, this work reveals that farnesylation is essential for parasite survival during temperature stress. Farnesylation of HSP40 may promote thermotolerance by guiding distinct chaperone-client protein interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。