Comparison of chondrogenesis-related biological behaviors between human urine-derived stem cells and human bone marrow mesenchymal stem cells from the same individual

同一体人尿液来源干细胞与人骨髓间充质干细胞软骨形成相关生物学行为比较

阅读:5
作者:Jiachen Sun #, Fei Xing #, Min Zou, Min Gong, Lang Li, Zhou Xiang

Background

Stem cells are the main choice for seed cells in tissue engineering, but using most traditional stem cells requires invasive and complicated procedures. Human urine-derived stem cells (hUSCs) are an alternative stem cell source with the advantages of being isolated noninvasively and repetitively from the same individual. The

Conclusions

In in vitro experiments, hUSCs presented better capacity for proliferation, while hBMSCs had greater chondrogenic ability. However, hUSCs and hBMSCs had similar cartilage repair effects in vivo. Results indicated that hUSCs can be a stem cell alternative for cartilage regeneration and provide a powerful platform for cartilage tissue engineering and clinical transformation.

Methods

hUSCs and hBMSCs were isolated from six patients who underwent iliac bone grafting. Cell morphology, proliferation, colony-forming, migration, and multidifferentiation analyses were performed in vitro. Then, acellular cartilage extracellular matrix (ACM) scaffolds were fabricated for in vivo implantation. The comparisons of cell viability, morphology, proliferation, and chondrogenesis between hUSCs and hBMSCs cultured on scaffolds were performed before implantation. The scaffolds loaded with hUSCs or hBMSCs were implanted into a rabbit knee model to repair cartilage defects. Magnetic resonance imaging (MRI) and micro-computed tomography (μCT) Analyses, inflammation and toxicity assays, gross observation, and histological evaluation were performed to evaluate the cartilage repair effects.

Results

In in vitro experiments, hUSCs had better capacity for proliferation, colony-forming, and migration compared to hBMSCs in the same passage, while hBMSCs had greater osteogenic, adipogenic, and chondrogenic abilities compared to hUSCs in the same passage. Both hUSCs and hBMSCs at passage 3 had the strongest potential for proliferation, colony-forming, and multilineage differentiation compared to cells in other passages. The ACM scaffolds loaded with hUSCs or hBMSCs both significantly promoted the repair of cartilage defects in the rabbit knee model at 12 weeks' postimplantation, and the new tissue was mainly hyaline cartilage. However, there was no significant difference in cartilage repair effects between hUSCs and hBMSCs. Conclusions: In in vitro experiments, hUSCs presented better capacity for proliferation, while hBMSCs had greater chondrogenic ability. However, hUSCs and hBMSCs had similar cartilage repair effects in vivo. Results indicated that hUSCs can be a stem cell alternative for cartilage regeneration and provide a powerful platform for cartilage tissue engineering and clinical transformation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。