Encapsulation of Bioactive Compounds from Germinated Mung Bean by Freeze-Drying, Release Kinetics, and Storage Stability

冻干法包封发芽绿豆中的生物活性化合物、释放动力学和储存稳定性

阅读:3
作者:Anh Thuy Vu, Tuyen Chan Kha, Huan Tai Phan

Abstract

This research explores the application of germinated mung bean extract, rich in GABA (Gamma-aminobutyric acid) and polyphenols, in enhancing human health. Recognizing the instability of these bioactive compounds in environmental conditions, encapsulation emerges as a pivotal technique to broaden their applications in food and pharmaceuticals. Utilizing response surface methodology and Box-Behnken design, the freeze-drying formulation for encapsulating the aqueous extract was optimized. Second-order polynomial models were developed, exhibiting statistical adequacy in predicting key variables such as encapsulation efficiency for GABA (EE-GABA) and total polyphenol content (EE-TPC), as well as encapsulation yield for GABA (EY-GABA) and total polyphenol content (EY-TPC). The established optimal formulation was validated, resulting in predicted values for EE-GABA, EE-TPC, EY-GABA, and EY-TPC. The release kinetics of encapsulated particles were investigated, highlighting the suitability of the Korsmeyer-Peppas and Higuchi models. Assessing the stability of the encapsulated powder under varying temperatures and humidities revealed degradation rates, half-life, and activation energy, with moisture equilibrium established at 4.70%, indicative of long-term stability. In conclusion, the encapsulated germinated mung bean powder demonstrates high stability, making it a promising candidate for integration into food products and functional ingredients.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。