Changes of Metabolites and Gene Expression under Different Feeding Systems Associated with Lipid Metabolism in Lamb Meat

不同饲养制度下羔羊肉脂质代谢相关代谢物及基因表达的变化

阅读:3
作者:Bo Wang, Xingang Zhao, Zhen Li, Hailing Luo, Hao Zhang, Yanping Guo, Can Zhang, Qing Ma

Abstract

The effects of the different feeding systems, graze feeding (GSF), time-limited graze feeding (GF), and stall-feeding (SF)) on the fatty acid content, metabolites, and genes expression of the longissimus dorsi (LD) in Tan lambs were investigated in the present study. Thirty-nine 4-month-old male Tan lambs with similar body weight (24.91 ± 1.74 kg) were selected and divided into the three feeding systems (n = 13) randomly. Lambs were slaughtered after 83 days of the feeding trails, and LD muscle samples were collected for further analysis. The results indicated that different feeding systems have no significant effect on short-chain fatty acids in Tan lambs (p > 0.05). However, the total saturated fatty acids (∑SFA) and monounsaturated fatty acids (∑MUFA) in the GSF and GF groups were lower than those in the SF group (p < 0.001). The total polyunsaturated fatty acids (∑PUFA) in the GSF group were higher than those in the GF and SF groups (p < 0.001). Moreover, in the comparison of both GF vs GSF groups and SF vs GSF groups, metabolomic analysis showed that metabolites such as cis-(6,9,12)-linolenic acid, arachidic acid, acetylcarnitine, and L-carnitine with lower concentration were significantly enriched in the biosynthesis of unsaturated fatty acid pathway (p < 0.05), but metabolites such as phosphorylcholine, glycerophosphocholine, cytidine 5'-diphosphocholine, and glycerol-3-phosphate with higher concentrations were enriched in the glycerophospholipid metabolism pathway. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of the results indicated that in the comparison of the GSF group with the SF group, differentially expressed genes (DEGs) such as LIPC, ERFE, FABP3, PLA2R1, LDLR, and SLC10A6, were enriched in the steroid biosynthesis and cholesterol metabolism pathways. In addition, differential metabolites and genes showed a significant correlation with the content of ∑SFA, ∑MUFA, and ∑PUFA in lamb meat (p < 0.05). These findings demonstrated that the feeding system was an important factor in regulating fatty acid content by affecting lipid-metabolism-related metabolites and gene expression in muscle, and graze-feeding system provided lamb meat with higher ∑PUFA content than time-limited-grazing and stall-feeding systems.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。