Effects of Seven Sterilization Methods on the Functional Characteristics and Color of Yan 73 (Vitis vinifera) Grape Juice

7种杀菌方法对烟73葡萄汁功能特性及色泽的影响

阅读:4
作者:Zixian Zhao, Jiaqi Wang, Caihong Li, Yuanke Zhang, Xiangyu Sun, Tingting Ma, Qian Ge

Abstract

Yan 73 (Vitis vinifera) is a dyed grape variety cultivated in China. Currently, most studies have focused on the mechanism of anthocyanins or the impact of anthocyanins as auxiliary color varieties on wine color. There is little research on its direct use or direct processing of products such as juice. In order to investigate the effects of different processing methods on the juice of Yan 73 grapes, the physicochemical and functional properties, as well as the sensory indexes of the juice, were analyzed by using thermal pasteurization (TP), thermosonication (TS), TS combined with nisin (TSN), TS combined with ε-Polylysine (TSε), irradiation (IR), and high hydrostatic pressure (HHP). The physicochemical indexes, functional properties, and sensory indexes of Smoke 73 grape juice were determined and analyzed. The results of the study showed that among the seven sterilization methods, total polyphenol content (TPC) in juice was significantly increased in all treatments except HHP. TPC was the highest in TP (3773.33 mg GAE/L). Total anthocyanin content (TAC) was increased except IR5, and TSN (1202.67 mg/L) had the highest TAC. In terms of color, TP (a* = 36.57, b* = 19.70, L* = 14.81, C* = 41.55, h° = 28.30, ΔE = 5.9) promotes the dissolution of anthocyanins because of high temperatures, which basically improves all the color indicators of grape juice and makes the color of grape juice more vivid. After HHP treatment, the color (ΔE = 1.72) and aroma indicators are closer to the grape juice itself. The Entropy weight-TOPSIS, CRITIC-Topsis, and PCA integrated quality evaluation models showed that all selected TP as the best integrated quality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。