Harmful Roles of TLR3 and TLR9 in Cardiac Dysfunction Developing during Polymicrobial Sepsis

TLR3 和 TLR9 在多种微生物脓毒症期间发生心脏功能障碍中的有害作用

阅读:4
作者:Fatemeh Fattahi, Mark W Russell, Elizabeth A Malan, Michella Parlett, Elizabeth Abe, Firas S Zetoune, Peter A Ward

Abstract

We determined the roles of TLR3 and TLR9 in adverse events of polymicrobial sepsis, with a focus on development of septic cardiomyopathy, progression of which we have recently shown to be complement- and histones-dependent. So Wt, TLR3-knocked out (K.O.), and TLR9-K.O. mice were subjected to polymicrobial sepsis following cecal ligation and puncture (CLP). In the absence of either TLR3 or TLR9, the intensity of echocardiogram (Echo)-Doppler dysfunction during development of cardiomyopathy was substantially reduced in the K.O. mice. Based on our prior studies emphasizing the adverse effects of plasma C5a and histones in the cardiomyopathy of sepsis, in TLR3- and TLR9-K.O. mice, there were striking reductions in plasma levels of C5a and histones as well as reduced levels of cytokines in plasma and heart tissue after CLP. Since we know that histones cause cardiac dysfunction, rat cardiomyocytes (CMs) were exposed in vitro to the histones (purified from calf thymus), which caused bleb formation on the surfaces of CMs, suggesting histones may perturb the cell membrane of CMs. In vitro, exposure of CMs to the histones for 3 hours caused lactate dehydrogenase release from CMs. These data indicate that sepsis-induced cardiac dysfunction requires presence of TLR3 and TLR9 and may be linked to histone-induced damage of CMs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。