Durability of and role of AKT in FGF7p urothelial protection against cyclophosphamide

AKT在FGF7p对环磷酰胺的尿路上皮保护作用中的持久性和作用

阅读:1
作者:Sridhar Tatarao Narla ,Lori Rice ,David Ostrov ,Daniel Scott Bushnell ,Joanne Lindsey Duara ,Carlton Matthew Bates

Abstract

We previously identified a peptide derived from human fibroblast growth factor 7 (FGF7p) that blocks urothelial apoptosis similar to full-length FGF7, although effects of FGF7p on urothelial repair are unknown. Also, while urothelial AKT activation downstream of FGF7p correlated with the anti-apoptotic effects, we have not directly interrogated the role of AKT in mediating the cytoprotection. Our goal was to assess effects of FGF7p on urothelial repair and the role of AKT signaling in mediating the cytoprotective effects of FGF7p. We performed hematoxylin and eosin (H&E), TUNEL, and/or immunofluorescence (IF) staining for various markers in FGF7p-treated mice 28 days after giving cyclophosphamide or after co-administering a systemic AKT antagonist with FGF7p 24 h after cyclophosphamide. Vehicle-treated and injured mice had hyperplastic urothelium, incomplete return of mature superficial cell markers, ongoing proliferation, and continued presence of basal progenitor markers 28 days after injury; conversely, FGF7p-treated mice had normal numbers of urothelial cell layers, nearly complete return of superficial cell markers, limited proliferation and fewer basal progenitor cells 28 days post-injury. Vehicle-treated mice also had ectopic lumenal basal progenitor cell markers, while FGF7p had none 28 days after cyclophosphamide. Co-administration of an AKT inhibitor largely abrogated FGF7p-driven AKT activation and cytoprotection in urothelium 24 h after injury. Thus, FGF7p drives faster and higher fidelity urothelial repair by limiting apoptotic injury via AKT signaling, similar to full-length FGF7. Finally, FGF7p is much less expensive to synthesize and has a longer shelf life and higher purity than FGF7.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。