Silica nanoparticles perturbed mitochondrial dynamics and induced myocardial apoptosis via PKA-DRP1-mitochondrial fission signaling

二氧化硅纳米粒子通过 PKA-DRP1-线粒体裂变信号扰乱线粒体动力学并诱导心肌细胞凋亡

阅读:4
作者:Xinying Zhao, Hailin Xu, Yan Li, Yufan Liu, Xueyan Li, Wei Zhou, Ji Wang, Caixia Guo, Zhiwei Sun, Yanbo Li

Abstract

Silica nanoparticles (SiNPs) are among the most abundantly produced nanosized particles in the global market, and their potential toxicity has aroused a great concern. Increasing epidemiological investigations and experimental evidence revealed the threaten of SiNPs exposure to cardiovascular system. The myocardial toxicity caused by SiNPs was gradually demonstrated, nevertheless, the underlying mechanisms remain unclear. In view of mitochondria serving as the centrality in the prominent of cardiovascular disease, we investigated the role of mitochondria and related mechanisms in SiNPs-induced adverse effects on cardiomyocytes. As a result, SiNPs were found in cytoplasm, accompanied with morphological alterations in mitochondria, such as cristae fracture or disappearance, vacuolation. The induction of mitochondrial dysfunction by SiNPs was confirmed, as indicated by the excessive reactive oxygen species (ROS) formation, and blockage of cellular respiratory and ATP production. Concomitantly, SiNPs activated mitochondria-mediated apoptotic signaling in view of the up-regulated BAX, increased Caspase-9 cleavage and declined Bcl-2, ultimately resulting in myocardial apoptosis. It was noteworthy that SiNPs disturbed mitochondrial dynamics toward fission phenotype, which was supported by the dysregulated fission/fusion regulators. Especially, DRP1 and its phosphorylated level at s616 (p-DRP1s616) were up-regulated, whilst its phosphorylated level at s637 (p-DRP1s637) and PKA phosphorylation were down-regulated in SiNPs-treated cardiomyocytes in a dose-dependent manner. More importantly, the mechanistic investigations revealed PKA-DRP1-mediated mitochondrial fission was responsible for SiNPs-induced cardiomyocyte apoptosis through the mitochondria-mediated apoptotic way. This study firstly demonstrated the disturbance of mitochondrial dynamics played a crucial role in cardiomyocyte apoptosis caused by SiNPs, attributing to PKA-DRP1-mitochondrial fission signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。