Mechanically induced osteogenic differentiation--the role of RhoA, ROCKII and cytoskeletal dynamics

机械诱导成骨分化——RhoA、ROCKII 和细胞骨架动力学的作用

阅读:12
作者:Emily J Arnsdorf, Padmaja Tummala, Ronald Y Kwon, Christopher R Jacobs

Abstract

Many biochemical factors regulating progenitor cell differentiation have been examined in detail; however, the role of the local mechanical environment on stem cell fate has only recently been investigated. In this study, we examined whether oscillatory fluid flow, an exogenous mechanical signal within bone, regulates osteogenic, adipogenic or chondrogenic differentiation of C3H10T1/2 murine mesenchymal stem cells by measuring Runx2, PPARgamma and SOX9 gene expression, respectively. Furthermore, we hypothesized that the small GTPase RhoA and isometric tension within the actin cytoskeleton are essential in flow-induced differentiation. We found that oscillatory fluid flow induces the upregulation of Runx2, Sox9 and PPARgamma, indicating that it has the potential to regulate transcription factors involved in multiple unique lineage pathways. Furthermore, we demonstrate that the small GTPase RhoA and its effector protein ROCKII regulate fluid-flow-induced osteogenic differentiation. Additionally, activated RhoA and fluid flow have an additive effect on Runx2 expression. Finally, we show RhoA activation and actin tension are negative regulators of both adipogenic and chondrogenic differentiation. However, an intact, dynamic actin cytoskeleton under tension is necessary for flow-induced gene expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。