Repression of let-7b-5p prevents the development of multifidus muscle dysfunction by promoting vitamin D accumulation via upregulation of electron transfer flavoprotein alpha subunit in a rat model of multifidus muscle injury

在多裂肌损伤大鼠模型中,抑制 let-7b-5p 可通过上调电子转移黄素蛋白 α 亚基来促进维生素 D 的积累,从而防止多裂肌功能障碍的发展

阅读:5
作者:Hai-Ming Yu, Xue-Dong Yao, Rong-Mou Zhang, Hua-Feng Zhuang, Pei-Wen Wang, Yi-Zhong Li

Abstract

Multifidus muscle dysfunction is associated with the multifidus muscle injury (MMI), which ultimately result in the low-back pain. Increasing evidence shows that microRNAs (miRs) may be involved in multifidus muscle dysfunction. In this study, we tested the hypothesis that downregulation of let-7b-5p may inhibit the multifidus muscle dysfunction development and progression. The target prediction program and luciferase activity determination confirmed electron transfer flavoprotein alpha subunit (ETFA) as a direct target gene of let-7b-5p. To study the mechanisms and functions of let-7b-5p in relation to ETFA in MMI progression, we prepared rats with experimental MMI, and a lentivirus-based packaging system was designed to upregulate expressions of let-7b-5p, and downregulate the expression of ETFA. ETFA was identified as a target gene of let-7b-5p. Older age, a longer duration of pain, and higher visual analog scale and Oswestry disability index scores for the patients with chronic low-back pain were linked to a more severe degree of degenerative muscle atrophy and fatty infiltration. Increased expression of let-7b-5p and decreased expression of ETFA and vitamin D receptor (VDR) were positively correlated with multifidus muscle dysfunction. Downregulated let-7b-5p could inhibit infiltration of collagen fibers, reverse the ultrastructural changes of multifidus muscle, and induce the VDR expression, thereby repair the MMI. The results provided a potential basis for let-7b-5p that could support targeted intervention in multifidus muscle dysfunction. Collectively, this study confirmed that downregulation of let-7b-5p has a potential inhibitory effect on the development of the function of the musculus myocytes by upregulating ETFA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。