Upregulation of SIRT1 by Evodiamine activates PI3K/AKT pathway and blocks intervertebral disc degeneration

吴茱萸碱上调SIRT1激活PI3K/AKT通路并阻断椎间盘退变

阅读:5
作者:Jianbo Kuai, Na Zhang

Abstract

Intervertebral disc degeneration (IDD) is a major cause of a number of spinal diseases, resulting in serious public health problems. Evodiamine (Evo) is an indole quinazoline alkaloid extracted from Evodia rutaecarpa, which has antioxidant, anti‑apoptosis and anti‑inflammatory effects. The purpose of the present study was to investigate lipopolysaccharide (LPS)‑induced IDD progression in human nucleus pulposus cells (NPCs) and its potential mechanism. The viability and apoptosis of NPCs were detected by Cell Counting Kit‑8 (CCK‑8) and TUNEL staining, respectively. Western blotting was used to detect the expression levels of proteins, cell transfection was performed to knockdown Sirtuin 1 (SIRT1) and the expression of tumor necrosis factor‑alpha (TNF‑α) and interleukin 6 (IL‑6) was detected by enzyme‑linked immunosorbent assay kits. The results showed that Evo effectively alleviated LPS‑induced NPCs apoptosis and caspase‑3 activation and Evo treatment reversed the upregulation of matrix metalloproteinase‑13, as well as the downregulation of collagen type II (collagen II), Sry‑type high‑mobility‑group box 9 and aggrecan and reduced the production of pro‑inflammatory factors TNF‑α and IL‑6 in LPS‑stimulated NPCs. In addition, treatment with Evo upregulated SIRT1 and activated the PI3K/Akt pathway, knockdown of SIRT1 inhibited the phosphorylation of Akt and PI3K in LPS‑stimulated NPCs. In general, Evo upregulated SIRT1 and inhibited LPS‑induced NPCs apoptosis, extracellular matrix degradation and inflammation by activating the PI3K/Akt pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。