Serial imaging of micro-agents and cancer cell spheroids in a microfluidic channel using multicolor fluorescence microscopy

使用多色荧光显微镜对微流体通道中的微药剂和癌细胞球体进行连续成像

阅读:4
作者:Mert Kaya, Fabian Stein, Jeroen Rouwkema, Islam S M Khalil, Sarthak Misra

Abstract

Multicolor fluorescence microscopy is a powerful technique to fully visualize many biological phenomena by acquiring images from different spectrum channels. This study expands the scope of multicolor fluorescence microscopy by serial imaging of polystyrene micro-beads as surrogates for drug carriers, cancer spheroids formed using HeLa cells, and microfluidic channels. Three fluorophores with different spectral characteristics are utilized to perform multicolor microscopy. According to the spectrum analysis of the fluorophores, a multicolor widefield fluorescence microscope is developed. Spectral crosstalk is corrected by exciting the fluorophores in a round-robin manner and synchronous emitted light collection. To report the performance of the multicolor microscopy, a simplified 3D tumor model is created by placing beads and spheroids inside a channel filled with the cell culture medium is imaged at varying exposure times. As a representative case and a method for bio-hybrid drug carrier fabrication, a spheroid surface is coated with beads in a channel utilizing electrostatic forces under the guidance of multicolor microscopy. Our experiments show that multicolor fluorescence microscopy enables crosstalk-free and spectrally-different individual image acquisition of beads, spheroids, and channels with the minimum exposure time of 5.5 ms. The imaging technique has the potential to monitor drug carrier transportation to cancer cells in real-time.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。