Housekeeping gene validation for RT-qPCR studies on synovial fibroblasts derived from healthy and osteoarthritic patients with focus on mechanical loading

对健康和骨关节炎患者滑膜成纤维细胞进行 RT-qPCR 研究的管家基因验证,重点关注机械负荷

阅读:4
作者:Ute Nazet, Agnes Schröder, Susanne Grässel, Dominique Muschter, Peter Proff, Christian Kirschneck

Abstract

Selection of appropriate housekeeping genes is essential for the validity of data normalization in reverse transcription quantitative PCR (RT-qPCR). Synovial fibroblasts (SF) play a mediating role in the development and progression of osteoarthritis (OA) pathogenesis, but there is no information on reliable housekeeping genes available. Therefore the goal of this study was to identify a set of reliable housekeeping genes suitable for studies of mechanical loading on SF from healthy and OA patients. Nine genes were evaluated towards expression stability and ranked according their relative stability determined by four different mathematical procedures (geNorm, NormFinder, BestKeeper and comparative ΔCq). We observed that RPLP0 (ribosomal protein, large, P0) and EEF1A1 (eukaryotic translation elongation factor 1 alpha 1) turned out to be the genes with the most stable expression in SF from non-OA or OA patients treated with or without mechanical loading. According to geNorm two genes are sufficient for normalization throughout. Expression of one tested target gene varied considerably, if normalized to different candidate housekeeping genes. Our study provides a tool for accurate and valid housekeeping gene selection in gene expression experiments on SF from healthy and OA patients with and without mechanical loading in consistent with the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines and additionally demonstrates the impact of proper housekeeping gene selection on the expression of the gene of interest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。